
IBM U2 Client Developer

IBM U2 Self Paced Learning Page 178

Lesson 6: Using XML Queries

In the previous lesson you learned how to issue commands and how to retrieve the
results of selections using the UniSelectList class, whether for regular enquiry

statements or from alternate key lookups.

Using a select list to pass a list of record keys and reading the set of records for
display is a simple and well-tried technique, but one that is normally associated with
server based operations. The problem is the number of round trips required to read
the data, especially if it must come from more than one file. Better by far to build all
the data on the server and send it back in a single call.

There are various techniques by which you can approach this, one of the simpler
being to leverage the XML support that is now offered by the three enquiry
languages supported on the UniVerse and UniData platforms.

RetrieVe, UniQuery and UniSQL all have the facility to produce output in XML
format. XML is a comfortable fit to the MultiValue data model, and you can read
about the range of support available and the features for generating and formatting
XML output in the previous volumes in this series.

Support for XML has been a strong element of IBM's stewardship of the products. It
is also a keystone of the .NET framework that offers a range of opportunities for
both generating and consuming XML formatted data. XML may not be the most
efficient way of structuring data – it is highly verbose – but the availability of tools on
both ends of the client/server divide makes it a perfect choice for situations in which
you need to pass quantities of data.

The various techniques for generating XML out of the database were covered in
detail in the previous volume, Self Paced Training - UniVerse Server Developer. For
this course, we will be concentrating on processing the results of those techniques
and so we will restrict ourselves to using a simple and easy technique for
generating XML from either UniVerse or UniData: using the enquiry languages and
adding the keywords TO XML and appropriate modifiers to an enquiry statement

9
,

as in:

LIST BOOK_TITLES TOXML ELEMENTS

or

9
 You will need to be running at least version 10 of UniVerse and version 7 of UniData.

Chapter 2 Native Access

IBM U2 Self Paced Learning Page 179

SELECT * FROM BOOK_TITLES TOXML ELEMENTS;

<?xml version="1.0" encoding="UTF-8"?>

<ROOT>

<BOOK_TITLES>

 <_ID>10</_ID>

 <SHORT_TITLE>Hancock a Comedy Genius (BBC Radio Collection)</SHORT_TITLE>

 <SHORT_AUTHOR>CAST</SHORT_AUTHOR>

</BOOK_TITLES>

<BOOK_TITLES>

 <_ID>11</_ID>

 <SHORT_TITLE>I'm Sorry I Haven't a Clue: Vol 8 (BBC Radio Collection)</SHORT_TITLE>

 <SHORT_AUTHOR>CAST</SHORT_AUTHOR>

</BOOK_TITLES>

<BOOK_TITLES>

 <_ID>12</_ID>

 <SHORT_TITLE>Friends, Lovers, Chocolate</SHORT_TITLE>

Building XML is a good way to generate data directly from the database, but of
course you then need to do something with those results. In this lesson we will look
at two ways in which you can do this: using the UniXML class or using LINQ.

The UniXML class

The UniXML class is something of a utility class. It is designed for a single purpose

only: to run an XML based enquiry statement and to capture the results as a
DataSet.

The DataSet

The DataSet is the foundation of the current Microsoft data access model.

Microsoft has adopted a range of strategies for holding and navigating tabular data
over the years, of which the DataSet is probably the most fully developed to date.

A DataSet is an in-memory representation of a database, containing strongly-typed

tables and relations and offering a (limited) ability to create views. DataSets are

independent of any physical data source, and can be designed and populated
entirely programmatically. They can be filled by ADO.Net providers, which in turn
can interact with data sources using older technologies such as OleDB and ODBC.
We will be looking at these in detail in the third Chapter of this course, when we turn
our attention to the mainstream relationally-founded routes for accessing UniVerse
and UniData.

DataSets were also the first target for data binding in .NET, though this has now

extended into object binding, which will also be covered later in this course.

IBM U2 Client Developer

IBM U2 Self Paced Learning Page 180

For regular UniVerse and UniData client/server programming, using a Dataset is

not normally a necessity when working with data, especially for updates where the
UniFile and the ability to call subroutines provide faster and more native routes.

Whilst offering a depth of functionality, when it comes to real world solutions a
DataSet can often be a cumbersome tool particularly when it comes to areas of

conflict resolution and validation.

However, using a DataSet when derived from a UniXML instance is still a useful

route for quickly and easily getting XML results gained from UniVerse or UniData
enquiries into a meaningful and navigable format. And the best thing about it is that
the UniXML class does this wholly automatically.

The UniXML class, you should not now be surprised to learn, is created by the

UniSession through a CreateUniXML method:

MyUniXML = MyUniSession.CreateUniXML

The UniXML class runs a TCL or ECL command and handles results returned in an

XML format. There is a major restriction: the only commands it will accept are pure
enquiry commands using the regular enquiry verbs – LIST, SORT or (SQL)
SELECT. You cannot, for example, give it the name of a paragraph or a program,
which effectively restricts it to being used for single-stage enquiry statements.

To run the enquiry statement, you must call the GenerateXML method. This

accepts two arguments: the command to run and any additional options to control
the XML produced. For those who have followed the previous course, this is almost
identical to the XMLExecute() function available in UniVerse and UniData Basic.

MyUniXml.GenerateXml(myCommand)

Hint

You can omit the TOXML clause on the enquiry command: the UniXML class will

add that automatically.

Once the XML has been generated by the enquiry command it is available through
the XMLString and XSDString properties that provide access to the document

and schema respectively. More usefully however it can be parsed into a DataSet

by calling the GetDataSet method.

System.Data.DataSet myDataSet = MyUniXml.GetDataSet();

Chapter 2 Native Access

IBM U2 Self Paced Learning Page 181

Exercise 2.6.1: Using the UniXML class for Simple Data

In this exercise, you will create a new lookup on the BOOK_TITLES file, this time
using the UniXML class to do the work.

Do This:

Add a new form to your application named SelectTitleXMLForm.

This will present a text box named txtTitle through which the operator can enter

part of a short title, and a Find button. Pass the UniSession instance across and

add this to your main menus in the same manner as the other forms in your project.

Add a DataGridView control to the form, but do not add any columns to the grid.

The form will look similar to the SelectTitleForm you should have created in the

last Lab exercise of the previous lesson.

Now code up the Find button to perform a partial string search on the
BOOK_TITLES SHORT_TITLE using the text entered. This will use a UniXML

instance to run an enquiry command and return a DataSet.

IBM U2 Client Developer

IBM U2 Self Paced Learning Page 182

Using VB.Net:

Private Sub cmdFind_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles cmdFind.Click

 Dim unixml As UniXML

 Dim ds As System.Data.DataSet

 unixml = sess.CreateUniXML()

 Dim cmd As String = String.Format("SORT BOOK_TITLES WITH

→ SHORT_TITLE LIKE ""...{0}...""", txtTitle.Text)

 Try

 unixml.GenerateXML(cmd)

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Return

 End Try

 Try

 ds = unixml.GetDataSet()

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Return

 End Try

End Sub

Using C#:

private void cmdFind_Click(object sender, EventArgs e) {

 UniXML uniXML = sess.CreateUniXML();

 System.Data.DataSet ds;

 String cmd = String.Format("SORT BOOK_TITLES WITH

→ SHORT_TITLE LIKE \"...{0}...\"", txtTitle.Text);

 try {

 uniXML.GenerateXML(cmd);

 } catch (Exception ex) {

 MessageBox.Show(ex.Message);

 return;

 }

 try{

 ds = uniXML.GetDataSet();

 } catch (Exception ex) {

 MessageBox.Show(ex.Message);

 return;

 }

}

Now for the final step you can let the .NET framework do some of the work. The
DataGridView control is designed primarily to act as a bound control, and if

assigned a table from a DataSet as its DataSource, it will automatically generate

the necessary columns and rows to display the table content.

Chapter 2 Native Access

IBM U2 Self Paced Learning Page 183

So to view the results of your XML enquiry, you can simply assign the first and only
table in the DataSet to the DataSource property of the DataGridView as below:

Using VB.Net:

dataGridView1.DataSource = ds.Tables(0)

Using C#:

dataGridView1.DataSource = ds.Tables[0];

Run the project and enter part of a title, e.g. Artemis. You should see a selection of
books by Eoin Colfer.

As you can see, using the UniXML to present data makes for a very simple way to

provide selections: I typically use UniXML to code up quick lookup forms for

applications in situations where I am not too concerned with performance. But the
UniXML class is also smarter than that.

In the example above, you referenced the results as myDataSet.Tables[0]. A

DataSet can contain multiple tables following a standard relational schema, and

can define relations between them that include parent/child relations. When listing
multivalued data from the XML query, the UniXML class can set up header and

detail relations between tables in the DataSet.

IBM U2 Client Developer

IBM U2 Self Paced Learning Page 184

When you perform an XML query against multivalued data, the values will be
returned in the XML document as nested entities. The fact that XML can handle
nested entities, which is a key part of the MultiValue model, is one reason why
UniVerse and UniData developers prefer XML over other data representations and
why XML is such an important addition to the UniVerse and UniData products.

Where these fields form an association, the association name becomes the parent
element of the nested row so preserving the natural association between the
values:

<?xml version="1.0" encoding="UTF-8"?>

<ROOT>

<BOOK_SALES>

 <_ID>13661*55800*1</_ID>

 <SALE_DATE>26 MAY 2005</SALE_DATE>

 <SURNAME>MAGGS</SURNAME>

 <FORENAME>CARL</FORENAME>

 <SALE_ITEMS-MV>

 <TITLE_ID>49</TITLE_ID>

 <QTY>1</QTY>

 <PRICE>9.99</PRICE>

 <GIFT>1</GIFT>

 <TITLE_NAME>Jingo</TITLE_NAME>

 <AUTHOR_NAME>Terry Pratchett</AUTHOR_NAME>

 <LINE_TOTAL>9.99</LINE_TOTAL>

 </SALE_ITEMS-MV>

 <SALE_ITEMS-MV>

 <TITLE_ID>47</TITLE_ID>

 <QTY>1</QTY>

 <PRICE>49.99</PRICE>

 <GIFT>0</GIFT>

 <TITLE_NAME>Harry Potter and the Goblet of Fire (Book 4)</TITLE_NAME>

 <AUTHOR_NAME>J.K. Rowling</AUTHOR_NAME>

 <LINE_TOTAL>49.99</LINE_TOTAL>

 </SALE_ITEMS-MV>

 <SALE_ITEMS-MV>

 <TITLE_ID>11</TITLE_ID>

 <QTY>1</QTY>

 <PRICE>12.99</PRICE>

 <GIFT>0</GIFT>

 <TITLE_NAME>I'm Sorry I Haven't a Clue: Vol 8 (BBC Radio Collection)</TITLE_NAME>

 <AUTHOR_NAME>Cast</AUTHOR_NAME>

 <LINE_TOTAL>12.99</LINE_TOTAL>

 </SALE_ITEMS-MV>

</BOOK_SALES>

</ROOT>

The UniXML class will preserve this relation when it comes to parsing XML data

that contains nested entities, whether standalone or as part of an association, into a
DataSet. As well as creating a single table containing the single-valued rows, it will

create child tables for each association and for each of the non-associated fields
and build the relationships between them.

Chapter 2 Native Access

IBM U2 Self Paced Learning Page 185

Exercise 2.6.2: UniXML with MultiValued Data

In this exercise, you will discover how UniXML can be used to generate a DataSet

from multivalued data and how that can be presented easily on a form.

So far in this project we have largely ignored the main file of the demonstration
database: the BOOK_SALES file. As the name suggests this file holds sales orders.
The file breaks naturally into a header section recording the customer details and
the order date, and a set of associated multivalued fields that make up the order
detail lines.

You are going to build a form to display a list of sales orders for a specific date. In
addition to the header details, as each order is highlighted the detail of that order
will be displayed.

Do This:

• Add a new form to your project called SelectSalesXMLForm.

• Pass the UniSession instance and add this to your menus

• Add a text box named txtDate and a search button named cmdFind to the
top. Then add two DataGridView controls side by side (you can add a

SplitContainer to your form to make this easier), but once again do not

add any columns. The resulting form should look like the one below:

IBM U2 Client Developer

IBM U2 Self Paced Learning Page 186

In the Click event for the Find button, you will once again create a simple enquiry to
return the sales order details for the selected date using a UniXML class:

Using VB.net:

Private Sub cmdFind_Click(ByVal sender As System.Object, ByVal

 e As System.EventArgs) Handles cmdFind.Click

 Dim unixml As UniXML = sess.CreateUniXML()

 Dim ds As System.Data.DataSet

 Dim cmd As String = String.Format("SORT BOOK_SALES WITH

 SALE_DATE = ""{0}""", txtDate.Text)

 Try

 unixml.GenerateXML(cmd)

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Return

 End Try

 Try

 ds = unixml.GetDataSet()

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Return

 End Try

End Sub

Using C#:

private void cmdFind_Click(object sender, EventArgs e) {

 UniXML unixml = sess.CreateUniXML();

 System.Data.DataSet ds;

 String cmd =

 String.Format("SORT BOOK_SALES WITH SALE_DATE = \"{0}\"",

 txtDate.Text);

 try {

 unixml.GenerateXML(cmd);

 } catch (Exception ex) {

 MessageBox.Show(ex.Message);

 return;

 }

 try {

 ds = unixml.GetDataSet();

 } catch (Exception ex) {

 MessageBox.Show(ex.Message);

 return;

 }

}

Chapter 2 Native Access

IBM U2 Self Paced Learning Page 187

Now before you go any further it will be useful to look at the DataSet that will be

produced by this enquiry. Set a break point on the line with the call to the
GetDataSet method, and run the project.

Enter a date for the sales orders, for example 26 MAY 2005, and click the Find

button. This will run the enquiry and stop at the break point on the line fetching the
resulting DataSet.

Step over that line and highlight the DataSet variable in your code window. From

here you should be able to select Quick Watch from the context menu by clicking

with the right mouse button:

You will notice that the DataSet now contains two tables.

In the Expression box at the top of the QuickWatch form, enter:

ds.Tables[0]

This will present the details for the main table, BOOK_SALES.

Next enter in the expression box:

IBM U2 Client Developer

IBM U2 Self Paced Learning Page 188

ds.Tables[1]

This will present the details for the second table named SALE_ITEMS-MV. You may

recognize this as the name of the association element in the XML listing above.

The population of the DataSet does not stop there. In addition to the two tables,

the UniXML class has created a relationship between them. In the Expression

window, enter:

ds.Tables[0].ChildRelations[0]

This defines the parent/child relationship, named BOOK_SALES_SALE_ITEMS-MV,

between the main BOOK_SALES table and the SALES_ITEMS-MV child table.

Now you have seen the structure of the DataSet produced by the UniXML class

from your enquiry, it is time to complete your form.

Do This:

Stop the project and return to the code for the Find button Click event. From here
you can assign the DataSource property of the first DataGridView that will

present the sales order header details using the first table generated:

Using VB.net:

dataGridView1.DataSource = ds.Tables(0)

Using C#:

dataGridView1.DataSource = ds.Tables[0];

Now the second DataGridView can be linked to the second table in the DataSet.

However if you simply assign the DataSource property to the second table, this

will display all of the detail lines but will not be coordinated with the first table. What
we need is to link the two grids so that the detail lines are shown only for the sales
order highlighted in the first grid.

They way you handle this may seem a little syntactically bizarre. For this you must
also link the second grid to the first table in the DataSet: but then set the

